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Part |
Introduction

1 Motivation

The investigation of the movement of objects and the laws behind them haagsdbeen one of
the main interests of scientific work dating back at least as far as philogophgient Greece [4].
With the development of modern scientific reasoning and technology the fiddth@matics
is ever changing. From a purely philosophical approach the field otikanderwent great
changes (advent of Newton’s law or quantum dynamics to mention the nwstrgnt.) How-
ever, even if the methods get more sophisticated and the objects of tebeaame abstract,
the main interest stays the same as narrow or as wide you may define kinerbascsibe the
temporal evolution of any given object, may it be a stone from a catapulieaatibtract object
we call a photon.

In this work we will investigate the dynamics of bosonic particles on a finitecimensional
chain with a tilted potential. We will later model this situation by the so-called Hubivendiel,
which was designed originally to describe electrons in low-temperature $atil s/stems [8].
On one hand, these considerations allow us to understand a wide rapgeradimena which
might be used in technical applications. Examples are the linking of atomic oftédolk
material with those of a substrate, chains of arrays of Josephson junf2ijnor the dynamics
of trapped bosonic atoms inside a periodic laser field [9], as well as stitkesanglement [18].

On the other hand the model can easily be reproduced for a wide rarqprarheters for
atoms in laser fields [9] and it has the advantage to be a standard modeldotu@uPhase
Transitions [5].

2 Formulation of the Problem in Terms of the
Bose-Hubbard Hamiltonian

We want to analyze the dynamic behavior of bosonic particles on a a finite oh& sites
(positionedi = 0,q...L —1). This system is considered to be governed by the Bose-Hubbard

Hamiltonian:
L-1

L-1 =
H= % uini + > Z ni(nj—1)— w ZO (binj + biji) (2.2)
1= 1= )=
The first term represents the sum over the energies associated tdteagitien by the number
of particles on the site times the associated chemical potgntiab is the hopping amplitude
between sites and j whereadJ denotes the repulsive two-particle interaction energy if more
than one particle occupy a given site (c.f. Figure 1).

The field operators are the bosonic creation and annihilation opetatt$ satisfying the
usual commutation algebl{a)i,bj T] = 9§j. This system is known to present a Mott-Transition
between a superconducting and an isolating phase, the latter one ogdarrinteger ratios of
the total number of particled and the number of sitdsso that we obtain a band structure with
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Figure 1. Hopping on the bosonic spin chain with same site interattimnhoppingw and
chemical potentials;

energy gaps a{‘é =n,n=0,1,.... This system has been studied experimentally in the funda-
mental experiment by Greiner [7] showing the Mott-Insulator phase transifitsso numerical
simulations have been carried out with many different generalizations to tteliilce multiple
dimensions [20].

For our work we consider a system at very low temperatures. Therafa particle-particle
repulsionU is too strong to be overcome by the thermal energy of the particles. If we plac
ourselves in the first superconducting band Q < 1 we can send the repulsion of the bosons to
infinity. Verifications of the validity of this approximation can be found in [1Blirthermore we
consider jumping between neighboring sites only, breaking down our sarmatl combinations
ofi,jin (2.1) toi = j+1.

3 Transformation to free Fermions

3.1 Transformation to the Spin Chain

The description of hard-core bosons as fermions is established inj6]sylstem described has
only two possible states per siteoccupiedn; = 1 or non-occupiedh; = 0, which can be treated
analogous to a spin-chain of spifisand |. The mapping is established using the following
transformation from the bosonic particle creation and annihilation opetattoshe spin ladder
operators (see [19] for details).

O'j+ :bjT
0~ =b;
which yields
ij = o +0 ijT—i-bj (3.2a)
ig) = ot-o" =b;T by (3.2b)
o’ = 200 -1 =2b; by — 1 (3.2¢)

I

Writing the ladder operators in terms of the bosonic creation and annihilatEnaiopsb, b',
we recover the common commutation relations of the spin operators (Pauli &atoic each site

[Uijaaik} =2iggo;  J.k1€{xyz}.



Inverting (3.2) and inserting in (2.1), we get the Hamiltonian in terms of a s@mch

wL_l X X Y Y c Hi 2
H:_Zzt](aj o1+ 0 c7j+1>+_ 50 (3-3)
I= 1=

We have dropped the constdEg(N, () = -3 4.

The main advantage of this new formulation of the problem lies in the fact thapthechain
is a system with well studied dynamics for which a rich set of mathematical todlsesults is
already available.

Let us briefly review the main properties of the system described by (&8).a constant
chemical potential, this Hamiltonian is the standard XX-Hamiltonian and is knowresept a
critical phase transition at = 4. For u higher than this critical value we observe the paramag-
netic phase essentially forcing all spins to be aligned with the externalfieibr lower values
of u the system is in a critical fluctuating phase.

The relaxation dynamics in this system have been largely studied (e.g.g[2{ekh as the
influence of the finite character of the system [3].

3.2 Jordan-Wigner-Transformation to non-interacting Fermions

The Hamiltonian of the XX-Model (3.3) can easily be solved using the Jevidigmer Trans-
formation in the case of a translation-invariant potential [12]. For a detdizlission of the
canonical diagonalization see [10, 15-17]. We will proceed analotgotiss, but keep in mind
the explicitly space-dependent chemical potentjal

The interest of the Jordan-Wigner Transformation is to completely fermianizesystem
(make the field operators commutation relations those of a system of noniimgrigcmions).
For the Hamiltonians (3.3) and (2.1) we have commuting operators for diffsites, e.g.

[Giﬂcrj*}:Oifi;«éj.

For many-body fermionic behavior we need to have an anti-commuting algebreeen sites.
This expresses that the many-particle wave function is antisymmetric undexdhange of two
particles in a fermionic system.

So we need a set of operators mapping from the spin opermtirshe creation and annihila-
tion operators;", ¢; associated to a given site i.

Ci = Aiaf
G =o"A,

whereA; is the operator which will be constructed to guarantee the necessanpantigation
relation, namely
{ct,¢} =4 foralli,j. (3.5)

This impliesA; to commute with all operators on site i.

{c.6"} = AT o7 + AT ANG o = {0707} =1



The actual transformation with the above mentioned properties for the nesatops can be
shown to be generated by the operator
An= I_l (_Giz)' (3.6)
i<n
By taking
ot =20" 0" 1=2A"Aic'ci—1= (¢ +c)(c" — )
we can rewriteA, in terms ofc,c™. With this representation @k, we express the terms in the
Spin-Hamiltonian (3.3) (using (3.5) and the fact that double applicatienafc;’ is zero):

07071 =(¢" +6i)(C" +Civa)

Uiyai{rl =—(¢" —c)(g" —cija).

It should be noted, that this method only works for a limited set of combinatibtie @pera-
tors aik,k =X,Y,Z In general it creates chains of operatqis_; ... resulting from the nonlocal
character of the operatocs

The transformation applied to our Hamiltonian yields:

L-1 L-2
H= i; picci — wi; (i 4 +Cipach). (3.8)

Although the Hamiltonian seems very similar to the bosonic Hamiltonian it now incluges th
non-local characteristics (creation and annihilations takes into accthyatrticles to the left of
the site we are acting upon) of our new operamcs .

This Hamiltonian can be solved using a simple Bouguliubov-Transformation.theoXX-
Hamiltonian {4 = u) this means essentially Fourier-transforming the annihilation and creation
operators.

In our case however, we have to explicitly diagonalize the Hamiltonian to obtaspetstrum
and energy eigenmodes generating the transformation.

By introducing the vector

H=¢'Te. (3.10)
The hermitian matrix is then
- w O 0
W — W
T=—| o - 0
W —H-2 w
0 0 W



For any given potentials,i = 0..L — 1, we can formally diagonalize the matrfixin order
to write the Hamiltonian in a form, that only depends on its one-particle eigensedéon
and destruction operatorg,, ng{. Let\7q,q = 1..L denote the (normalized) eigenvectorsiobf
dimensionL:

TVy=¢&Vq q=1.L (3.12)

In principle it is then easy to deduce the unitary transformation diagonalizitngthe diagonal
matrix D: R
H =¢'De=¢'0bute = ATDA
such that )
H=% gn’n.
g=1

So once this is done, we have the spectrum of the Hamiltonian as well as thetonpe
(ng,nq)creating or destroying the eigenstate associateg} o the diagonal system. So we
can decompose any operator expressed in termgsofinto its energy eigenmodes and therefore
calculate its time-development. Reintroducing the dropped constant frojn (3.3

L 1

3.3 Clifford-Operators

Instead of using (3.10) directly, it is convenient to use a generalizedseptation in terms of
linear combinations of called Clifford operators noted?, wherea = 1,2 and n=0.L — 1. Their
definition in terms of the fermionic operators is

I’ﬁ = (Ci + Ci+>
Fﬁ =i (Ci —Ci+) .
These operators are hermitian by definition and form an algebraic seucalled Clifford-

Algebra, characterized b\jr#,rrvn} = 20mndyv. The Jordan- Wigner-Transformation then
reads [15, 17]:

of = rl(—irjzr})ril (3.14a)
I<i
of = [](=irsrhre (3.14b)
I<i
with o? = —ir?ri (3.14c)
In this case, we get
001 =— irizri1+1
oal, =—irt,r}



such that
w2 o 2 ey e Mo
H:ugzj(rjrﬁﬁrmrj)ﬂ ST (3.16)
= =

which can be symmetrized by substitutiigf T = 3 (r?rjl — F}Fiz) (we again dropped the con-
stantEp). As the Hamiltonian is now quadratic in termslgfwe introduce the vector

M F%
M rt
r— — L 3.17
M1 r? ( )
ML re
and write our Hamiltonian as 1
H= 21rTfr. (3.18)

The hermitian matrix is in this case given by

- 0o C
T‘(C:T 0)

with
—Up 0 0
w —H
E——i| o . .. - 0
3 w U2
0 0 w —U—1

Again, we can for any given potential diagonalizeo write the Hamiltonian in diagonal form
with this timeV; denoting the (normalized) eigenvectorsiobf dimension 2.:

So we get for the transformation ®fto the diagonal matrif:

I N -
H=>r"r =-—U0DU'— = ZX'DX 3.20

4 2.2 N7 ( )

such that the Hamiltonian reads in terms of the one-particle eigenfuncticiocraad annihila-

tion operators
2L

1
22,

The factor% in (3.20) guarantees a “normalized” anticommutgtdg,", X } = dqx.



We have to find the transformation mattix(the eigenvector‘s?q of T) to determine the decom-
position of any operator in the diagonal system of the Hamiltonian and thidirgas express
its time-development.

It will be useful to rewrite the eigenvectors of the diagonalizing transftionas

(3.21)

iWy(n=1)

where the indexnin Vy(m) runs over the R lines. These are basically the Bouguliubov coeffi-
cients for the diagonalizing transformation:

1 2L i}
Xq= 75 3 Va(m) T (3.22)

Their inverse yields a result which is totally equivalent to the one we foanthé operators, c*
with nq the annihilation operator of an energy eigenstate:

rT'=Y ®q(m) (ng +nq) (3.23a)
q

r3=iy Wo(m)(ng —naq) (3.23b)
q

H:ZeO| (nqnq*—;> q=1...L (3.23¢)
q

This result is for a system without creation and annihilation of particles iddnt¢3.12) due to
a symmetry of the Clifford-operators and Bouguliubov-Coefficients.

To explicitly calculate these coefficients, we use the formulation (3.21) in8vthiEh gives
us the two coupled equations (c.f [15])

iCTdg = q¥y (3.24b)

These equations allow us to group the solutionsefpinto a positive and a negative spectrum.
From any positive set of squtioniQSq, Lqu, &) = 1.L describing a spectrum of particles we
can directly deduce its anti-particle counterpartdg, Wg, —&q) q=L+1..2L and vice-versa.
The energy spectrum in termsafc™ (noted primed) simply neglects the anti-particle spectrum:
Pq(n) = Wy(n) = Pq(n), &, =& q=1.L. We will in this work always treat the particle
spectrum only and neglect the symmetric antiparticle spectrum.



4 Basic Concepts

After having put forward the problem and simplifications, we will now preglege main concepts
for its solution including some fundamental results we will need in the courstidy.

First of all let us define the basis of our system. The dimension of any ctenmpdesisB is
2L (L independent spins). Each basis is made up from antisymmetric Fock stathsof which
describes a combination of L one-spin stdtes |. Two possible one-spin bases to build up the
Fock states from are e.g. the base of localized one-particle-states $itethiécreated/destructed
by ci,¢") or the eigenstates of the Hamiltonian (associateghtong;"). We can define this latter
basis by

B= ¢ |Wot) = Ng N N Mg - - |0)
—_—

all possible combinations afs € [1..L]

4.1 Conventions

There are some notations and conventions we will use throughout this Wergive a short list
of those to keep in mind:

e The Hamiltonian above is over-parametrized. Actually we can factowoWithout loss
of generality, we can seb = % and scaleu (and the Energy) in terms @b.

e We will use the spir§¢ k = x,y,z which expresses the link of the Pauli Operatofs
with the energy of the expectation values and will be treated analogous toreetizadjon.
However, as we have skt= 1 the difference between the operators is merely formal. The
expectation value foB is taken to range from-1 (associated th))) to 1 (1)), where—1
is a non-occupied and 1 an occupied state in terms of bosonic particles.

e \We sometimes substitute the integer variable denoting the position by a contirarous v
able. In this case, we will no longer refer to the position with variables daatyndenot-
ing integers (e.gn, m,i) but by a variable associated to a continuous position ¢gyg2).
We will then use the magnetization(x) and the particle density(x) instead of the spins
on each site. In general we will use subscript indices likgto denote discrete depen-
dencies. To avoid confusion with multiple indices, a notation analogous to tlimgous
system is sometimes used also for the discrete case (thys(€.p.

e The connection between the spin and the bosonic operators is given by

N :%(SZH)

or in the continuous case

10



e The Heaviside step function is denoted by

if
o) = 0 | x<0
1 if x>0

and the door (formally boxcar) function

if a<x<b

[(a...b;x) = {; . 4.2)

otherwise

4.2 Expectation Values, Wicks Theorem and Representation in Terms of
the Correlation Matrix

Our interest lies mainly in the expectation values of observables, like thgyefi¢y = E or the
spin at a given positiofo?).

In general we have:

(0) =Tr{Op},
wherep represents the density matrix operator and the trace being taken ovamaplete basis.

We have shown, that all degrees of freedom are those of the spirdl fsites. Changing
into the energy eigensystem they can always be expressed in terms diftbied @perators
(3.14a)(3.14b) (3.14c).

Wicks theorem states, that it is always possible to factorize these expeatalies of many-
operator products down to a sum of products of two-operator expattatioes. If we know the
behavior of all two-operator expectation values, we can formally dethécexpectation value of
any physical observable. In our case these two-operator expectatims are:

(Thryy pv=12 nm=0...L-1,

basically the correlators between the Clifford-Operators associated 4o sitelm according to
their values. These correlators (prefixed-biyto create a real matrix) can be written in a matrix
form called correlation matrix:

(rorg) -+ (M. (grg) - (Mot )
G=—i <r%515(1)> <F&51£&71> <F&5128> <F%512E71>
<roro> <r0rL—1> <r0r0> <r0rL—1>
<I'E_1F(1,> <FE_1F&_1> <FE_1F%> <FE_1FE_1>
which can be written as . ~
G (M I
-1 My J°
Mlz are unknown matrices and
lij=—i(rirs).
Notice that
|i,i:<02>.

11



4.3 Thermal States

Let us determinés for an equilibrium state at temperature T. [®be the inverse temperature
andng, r); the creation/annihilation operators of the diagonalized Hamiltonian eigenstsiges.
have to calculate for the expectation value of any operator
e*B >q &g (f];?,f)q//*%)
(0)=Tr{Op} p= > :

whereZ represents the partition function

7Z—Tr {eB Yqr &g (n;;/nq//*%> } — |_J COSh(B Eq//) )

; 2

By introducing (3.23a)(3.23b) and then using the orthogonality of the sigts in the eigenba-
sis of the Hamiltonian as well as those®§(n), Wq(n) (with n(jn + nqnar =1) yields [16]

(Ms)nm  =—i(Falm
{3 03 410 (1 1) xonvgonp|
=i z 5q’q/cbq(m)w‘1(n) = —i0hm (4.2)
a.qf
lhm =—i <r%r,?n>
o Bear (ngng-3)
I {(nq*nq nan) e 1 }

(4.3)

such that )

4.4 Unitary Dynamics of the Correlation Matrix

The time evolution of the system is done as described in the proceedings, t5]14In the
Heisenberg picture
O(t) = Uf (1)O(O)U;(1),

whereU, = "Mt is the the time evolution operator.

12



The time evolution on the non-observable diagonal operators of the Hamiltépias defined

in (3.22) is given by [15]
(x0)- (%" &) ()

Therefore we get in terms of the Clifford operatotsi§ the diagonalizing transformation):

[ (t) =v20X(t)

. ~ 1 -
=+v/20exp(—ibt) —=0'r (0
p(—iDt) »UTO
R(t)
:efi:rtr(o)’
where
R—gilt

is unitary. We see from the above equations, that its elements are

Z Vg(n) g et (4.4)

which can be simplified considering the symmetry of the energy spectrum-for—e. With
n,me [0,L—1]:

-

R = 1cl)q(n)QJq(m) cog&qt)
q:
L
RML— _RD, — 1q)q(n)L|Jq(m) sin(&qt)
q:
L
Rﬂ‘i& =Y Wy(n)Wq(m) cogegt).

1

Q
I

The time evolution of the expectation values of arbitrary operators can&datad using the
dynamics ofG. The connection to the dynamics of the Cliffor-Operators is readily made:

(@)= (<NOrO) = 5RO (=NOF0) RO} = 5 ROGO) R
]

yielding the final result
G{t) = RIHGOR(Y) " (4.6)

In principle this allows us via Wicks theorem to calculate any observable inytera at any
given timet from the initial correlation matrix.

13



4.5 Conserved Quantities

To get a rough idea of basic constraints of the dynamics in our system,weittumbnserved
guantities. The first is obviously the total energy, which is always ceeddf the Hamiltonian
has no explicit time dependence because of

dH oH
i H+ 20
o~ HHE S

We can define a kinetic and potential energy

o= 3 ()60 @72
o= (-9)'S (S5 +5.0) @70)

Etot = (H) = Epot + Exin.

The second conserved quantity is the total magnetization or equivalentlytgh@donber of

particles.
L

<Stzot> = ; (Swz> = 2Niot — L.

This value, not depending on the change of the potentta:dd is obviously conserved due to
ZOt
— Z
o |™h2S
[Z ; (S's 1+S¥a+l)]
| |=

L2
Z) 2i(F51+S |+1) 2i (SS 1 +8S4))

N\S N\S

14



Part |l
Quench Dynamics

5 Quench Protocol

The protocol of our simulations will be to create a localized initial state in thermalilerium
and then abruptly changing the underlying potential. According to recgetignents [9] at low
temperatures we s&t= 0. The initial state at = O is created using a potential of the form of a
well causing condensation of all particles inside this part of the systempddigon and density
profile of the condensate can be controlled by the potential. In genenailiteap the particles
in an area next to the left border of the system.

At t = 0+, we abruptly change the potential profile. Therefore the initial state is getdhe
ground state of the new system and we observe non-equilibrium dynamics.

In Figure 2 we show a draft of the two situationg at 0 andt > 0.

(@t=0 (b)t>0

Figure 2: Schema of the quench protocol for an inverse well as finahpal.

It should be noted that this relaxation dynamics is unitary (no dissipdfigiconserved) and
conserves the number of particles.

6 Initial State

Let us characterize the initial state shown in Figure 2.

The first step is to find the Hamiltonian eigenstates. We can treat the probldiagonali-
zing the Hamiltonian in analogy with a potential well problem although the intetpyetaf our
eigenfunctions as coefficients for creation and annihilation operators iinaimework of second
guantization is different.

6.1 Eigenstates and Energy Spectrum

The initial state is created inside a flat potential well of constant potentidizedan a left part
of width A of the system of total length. For now, we suppose to have infinite walls to expel

15



particles from any other region.

Mo for O<i<A
Hi= Ur— o  for A<i<lL’

To find the spectrum of this system on the chain we solve (3.24a),(3.24bdhsithnsatz
®(i) =W(i) =exp(ziq(i+ 9)), (6.1)

whered is a phase angle to be determined by the boundary conditions. Using thdappun
conditions
d(—1) =d(A) =0, (6.2)

we get a quantization of energy (agd The final states associated to a given eneggyre linear
combinations of (6.1) associateddpand —gx. Noting the final states by (i), we finally get
(similar to a continous square well):

& = Ho — 20w COS 0k) (6.3)
D (i) = Wi (i) = Asin((i + 1)o) (6.4)

with A = \/% the normalization constant and

krt
_ M w1 A
= Ar1

Note that from now on we will seb = % to simplify the dispersion relation (6.3). Furthermore
we will define for a given site the potential and kinetic energy corresponding to an energy
eigenmode by fixing:

Epotk= M and Eyink = — cog0)- (6.5)

6.2 Thermal initial State

As mentioned in 4.3, we can describe the system in thermal equilibrium by tredat@n matrix:

(D= —i@k(n)wk(m) tanh<gsk>. (6.6)

For zero temperature
tanr(gaq) = sign(gsk) = sign(&). (6.7)

We have to distinguish the well-known critical and non-critical regions ofXKeModel. For
|Uo| > 1 (paramagnetic phase), all are of same sign, such that

(IA) nm_ _5n,m3igr(£n)-
S, = —sign(e) (6.8)

16



is always directed against the external field. In terms of bosonic otonpiensity:

1,
p=5(~signe) +1).
If |Ho| < 1, part of the spectrurg is positive and part of it is negative. We have namely N
occupied states & gk < gy with gy = max{q, qx < —arccosgpp)}. Using (6.6) to calculat&
yields

(IA)U ~— %arcsir(uo) (6.9a)
2cogiarccosip)) Zcos{i—]f ) sin(%) cogiarccos|lp))cogiarccosLip)) (6.9b)
AT A(1— cog ) - ®

where we have neglected terms in higher than second order(6f9a) is the usual result for the
critical system. (6.9b) is vanishing with distance from the border and sysitgarand therefore
merely a finite size effect.

A similar approximation to the values for the off-diagonal elemenisrefults in

(1 nm z% sin(marccosLp)) sin(narccos o))

+ (i sin(marccos$pa)) cognarccosio)) sin(nKn)

_ icos(marccowo))sin(narccoséuo))sin(T)) cog ™) 1005(”,1").
Again we have a volume term vanishing with the size of the system. In additionttev¢haave
the correlation term between nearby sites, which decreases with growing

As an example we consider the simple cage= 0. This will also serve to show the phe-
nomenological difference between a system with infinite walls and the cas®jch the poten-
tial stays finite fori > A.

In the infinite well case, we have to solve

s=1 Zsign(ﬁek)

which is zero due to the symmetry of ¢qg) aroundq = 11/2. There are exactly half of all states
with positive and half of them with a negative spin, so they cancel outusecaf

sin(nLZJ —sin((L+1—n)Lfl>.

Now we try to understand how non-vanishing boundary conditiodscitange this situation.
On one hand the above mentioned symmetry isf broken. An easy calculation can be done to
approximately model this fqug = 0. We take the eigenfunctions of the infinite case as reference
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Figure 3: Results for the initial occupation density created by different lipitisentialsp for a
system ofA = 30 with w = 1/2. Fori > 30 the system continues with an infinite (dashed lines)
or finite (up = 1, straight lines) potential.

but use a simple small constant shift to the wave veqgoe kﬁ”l + o. Then we can extract
approximately inside the system of lengttirom (6.6) :

sin( 59— ) if neven
S Ly (i) i
’ M+1 cos(z( ) if n odd

_m

M+1)
This introduces oscillations of unit wavelength far from the boundary ginerges near the
boundary as observed in the numerical data.

For other values ofg this effect is masked by the oscillations of finite sum over the eigen-
functions, that canceled out fpgy = 0 due to the symmetry of . Numeric results are shown in
Figure 3 alongside with the initial densities created using different initial gefioreug.

A reasonable approximation of the initial occupation density is according®di6the conti-
nous limit given by

p(x) = %@(A—x) o = arcco$— o). (6.11)

7 Dynamics of the Step Potential

So far we have only considered the properties of our system at a tjiwert = O, creating
thermal states and calculating expectation values. We will now turn to the dymémic> 0 as
described in 5. First we will treat the very simple step system as a startingtpainderstand
the fundamental laws underlying the time-evolution of the particle density.

We are using the Heisenberg picture, so our initial state remains time-indagendile we
apply an evolution to the operators and thus their expectation values. Weredtgd by dia-
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gonalizing the Hamiltonian before putting forward the main characteristics afyth@mics. Let
our system be described by a step function chemical potential on site

A for O<i<A
Hi= ug  for A<i<L’

7.1 Dispersion Relation and Energy Spectrum

We now solve (3.11) or analogously the system (3.24a),(3.24b).

Separating the system into System A{@ < A) and B A <i < L), we can solve it inside each
of them with the same Ansatz (6.1) as we did for the initial potential in 6.1. Insidk ef the
two systems the dispersion relation reads

€=px —coqok) K=AB. (7.1)

Therefore we have, when looking at the two systems together for aag givergyey:

Ua — 20w c0ggak) in region A
& = . . (7-2)
Us — 2wcogggk) in region B
with the constraint
Ua — Hp = €OY(0sk) — COTlak) (7.3)

Combining this with the boundary conditionsiis- —1, A, L we will obtain a discretization of
theL possible energy valueg, k= 1...L associated to compatible pairs of wave vectpisqgk.

7.1.1 Boundary Conditions at 0 and L—1 and A

From the vanishing boundary conditionsiat —1,L we get (using the Ansatz (6.1) inside Sys-
tems A and B separately) and using the dispersion relation:

®a(N) = Wa(n) =Asin(ga(x+ 1))
Pg(n) = Wg(n) =Bsin(gs(x—L)).

A, B are normalization constants. To quantize the energyd identify the associated compatible
wavenumbersjak, sk We go ahead and plug these into the boundary conditions at the interface
between A and B (resulting from (3.11)). Together with the constrainj (veshave to solve

(sin(Gu(A— 1))+ Sinaa(A~ L)) + (- + €)in(Ga) 0

(gsin(qAA) +sin(gg(A+1— L))) +(—Hs+¢€)sin(gg(A—L)) =0.

cogQs) — COSQa) =Ha — HB

This leaves us (after elimination of the quotient of the normalization constadts &y the
dispersion relation) with the system :

sin(gg(A—L))sin(gaA) = sin(ga(A+1))sin(gs(A—1—L))
Ha — Ug = cOg0s) — COYda)
Thek=1...L solutions(gak, gsk) to this system are nontrivial.

19



Energy

System A System B
20 _ Region |
O S classically |
g accessible 1
20 region 1
2w for ga classically |Region i
accessible T
HB .................................................. S SALSLS S LSS S ..
region Redion (I
o0 for qa egion
1 |
0 i L

Figure 4: Schematic draft of the energetically accessible regions. Tgezléotrons and holes
will add the mirrored spectrum to the shown picture which is associatedto—<. As those
spectra are totally independent due to the symmetry stated above we limit @itler@tions to
one of them.

7.1.2 Allowed Energy Regions

Although we cannot calculate the solutions fprandgg exactly, a closer look at (7.2) reveals,
thatga andgg have imaginary parts fqrsk— uA/B} > 1, changing the eigenfunction sinus to a
hyperbolic sinus decrease. We will therefore call a spacial regioesaitde for a state of given
energye if it's wavenumbergy is real inside this region, such that the state shows oscillatory be-
havior. In the same way we will call states of imaginary wavenumber forbiddete that every
state has to be allowed inside at least one Subsystem A or B to allow normalizassaming

Ua > Ug, we can therefore define three energy ranges. All states inside é#wno have the
same allowed and forbidden spacial regions:

Region | pa+1> & > pg+1, d(i) is allowed inside 0..A— 1, qax is real,0gx = 1T+ iqg,
causing decreasing oscillations inside the forbidden region.

Region Il pg+1> & > ua—1, dy(i) is allowed inside 0..L — 1, gak andggk are real.

Region Il pa—1> g > ug— 1, d(i) is allowed insideA...L — 1, gak = idy, is imaginary,
Osk is real.

In Figure 4 those regions are sketched. It is important to note, that ttemrégnay disappear
if |ua— us| > 2, leaving Regions | and IIl as two energetically decoupled systems.

We limit our considerations to the cagg < ua, the other case can be directly deduced by
symmetry.
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Figure 5:®4(n)(= Wq4(n)) shifted by their associated energy Eigenvalues for a system-040
sites usingA =20 mux = 2, mus = 1, w = 0.5. The dashed line represents the borders of the

allowed energy regions

The structure of our solutions will be as follows if we start wjith — ug = 0 and gradually
increase the potential difference: First we see only modes spanninghthie Vength of the
system withgak = Qgk = n%, N=1...L. Slightincreases do not change the picture but shift the
energy levels. Increasing further, the upper- and lowermost etergls drop one after another
into regions | or Il resp. until we are left with the two decoupled systemsat pg > 2.

The eigenfunctions of the Hamiltonian are shown in Figure 5 for an exampdatoa differ-
ence ofa — g = 1.

We see clearly the three regions described above as well as the ingreasiber of nodes if
we move up in Energy.

7.2 Density of States

It will often be interesting to pass into the continuum limitgp
Y fla— /dsn(s)f(s).

using the density of statege) = Em{ 5 Letus determine the total density of states from the

density of states of the two simple systems.
For systems A and B separately we can define a density of states in termsesfunzbers
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n(gk ), K = A, B from what we have seen so far:

1W(@) = AT1(0...max) and na(ae) = = 1(0... o) 75)
leading (via (6.3)) to
Nk (€) = %H(#K —1..uk+1le), K=AB.

Let us recall the Hamiltonian (3.16). If we define the two Subsystem HamilteianK =
A, B as the part of the Hamiltonian acting only on subsystem A or B, we can rewrite

.
H=Ha+Hg+i= (TA1la+TATA-1) =Ha+He+ Hmix

allowing to approximate

<Hmix> 1 <Hmix> 1
~—-<«1 and ~N—— 1
(Ha) A (He) L-A

Therefore we can expect the energy spectrum $edb be very little changed by the contribu-
tion of the interacting pat nix. If we are now interested in the spectrum of the total Hamiltonian,
it will therefore approximately be the superposition of the two initial spectristiag almost un-
changed:

specH ~ specHa ) spects (7.6)

As a consequence, the density of states for the complete system is the thentvas initial ones:

All(pa—1..pat1ie)  (L—A)(Ms—1..ps+1€)
m/1— (€ — pin)2 /1 (€ — Hg)?

The results for a relatively big ratio @& to L — A is shown in Figure 6. We can see, that the
1

mean of the numerically found density of statés) = e is very well modeled by (7.7).
The superposition can qualitatively also be seen in Figure 5.

Actually we can make a similar development for the wave number3heir value inside
one subsystem of length can only be shifted by a maximunt Bfby the linking of the two
subsystems. This is due to the fact, that the number of zeros of a giverassatdated tay is
fixed tok — 1 and has therefore to stay unchanged inside each of the systems, auibhatly

(kt3)m (k=3)T
S

(7.7)

n(e) =~ na(€)+ng(e) =

7.3 Velocity of Excitations on the Chain

A fundamental quantity of our Hamiltonian is the propagation velocity of excitatimm the
chain. For the uniform initial state with an abrupt change of magnetizatign pesticle density,
we expect to see an excitation dynamic starting from this interface point.

The dispersion relation (7.2) suggests to characterize the propagathis pérturbation by a
propagation velocity:

ww=—-——=sin(gy) = 0<|v<1 (7.8)
do
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Figure 6: Density of states obtained numerically and by the approximation afa litistribution
of statesiy g(q) inside Systems A and B with parametess- 0.5, pa = —1.5, g = —2L = 1000
A= 250.

The maximum velocite = 1 limits the propagation of any perturbation of our system.
Physically it means, that our system is locally in equilibrium outsidgjof ct as created at
t = 0 just until the perturbation has reached it. Any $ite< ct will be influenced by the initial
perturbation. In other words a causal relation between two events arhaur can only exist, if
the distance between the two events is smaller than
The propagation speed associated to a certain erg@jypositioni is then defined by:

Vk = sin(gk) = +4/1— (& — 14)?

So propagation is fastest feg = L and slowest at the maximum and minimum of the allowed
energy regionsy = j + 1.

7.4 Time-Evolution of the Magnetization Profile

7.4.1 Flat XX-Model System (Greens Function Approach)

We will demonstrate in a first step the dynamics on the well-studied and simple ¢ostald
XX-Model (uj = u = Const), for which it is actually possible to calculate the time-evolution
explicitly in terms of Bessel functions. For this case, the chemical potentialiisrm, so we
expect a linear propagation of any perturbation. In our case we sagpgrepare the system
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with a magnetization according to
m(x) = (@ +1)0A-x)—1 a=-1...1, (7.9)

where®(x) denotes the Heaviside step function.

As the new equilibrium state &t— o will be the uniform distribution of particles over the
whole chain, we expect a propagation of magnetization to the right and detwgion to the
left. The conservation of total spin and the symmetry of our initial state stigbes these two
excitations will propagate completely symmetrical in different directions until gyenmetry
is broken due to the finite size of our system, when they hit a wall. The maximeedspf
propagation will of course be<c=1.

In this special case of a flat final potential it is possible to describe treaawent of(S*) (n)
by a discrete convolution product of the initial magnetization and a Greaotidn. The explicit
result including the form of the Greens function can be found in the des@ed continous

case [15,17].
(1)) = Fo(t) x (S5(0)) = Z F(n—k) ($5(0)))
In the continous case the Greens function and convolution are
wx )= [ dyRoOn(x-y.0 (7.10)

with the Greens function

(7.11)

F(v) = 7—11(1—v2)*% if |v<c=1
0 if |v>c=1

For the initial step magnetization (7.9) we get for the magnetization as long asnbhaeached
the walls of our system

a if X<A-ct
mé(x,t) = %—“—#arctan(h) if A—ct<x<A+ct. (7.12)
-1 if A+ct<x

These results do not depend on the actual value of the constant field.

It is interesting to note that this relation takes a scaling form=ng.

The solutions of this approach are represented together with the numesadls for a chain
system in Figure 7, yielding an excellent agreement if we neglect the snedlhtisns caused
by the quantum character of the system.

We observe that the numeric data agrees with the results from the Greetisfiiuas long as
we have not met a system boundary with our propagating excitation. Tpageation occurs
with a maximum speed af = 1 in agreement with the previous paragraph. So the first change
of behavior can be seen for a system of 30 sites at ateu80, when the left front hits the left
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Positionn

Figure 7. Time-dependent results far= 30 initially at zero temperature with = 0 in a flat
potential (+ = 0). Numerical results (symbols) and their continuum solutions (correspgn
dashed graphs, solid black for initial state) for different times. Theeathsbrtical line marks the
theoretical final distribution &, = —0.7 and can be seen as the theoretical curve fereo

wall and is reflected and moves back to the right. The obvious symmefrpirihe problem so
far reflects spin conservation.

For long times (not shown in this graph) we observe an interference pogigve and negative
wave packages being reflected by the two walls and widening more and rhideeawproaching
the new equilibrium distribution shown in Figure 7.

7.4.2 Step System

In the step-potential we expect a far richer dynamics than for the XXe8ysbecause of the
two distinct spectra of the two sides of the system. As a first step towardscaptian of the
dynamics we will show and analyze the phenomenology of the time-evolutioisafytstem for
the well-known thermal state localized to the left for different final potentials

The graphs in Figure 8 show the evolutionS5fn) for different final potentials. Let us recall
the Hamiltonian

L-1 L

w Li

-z X X Yoy )= 5 B2

H= 2§<ajaj+1+ajaj+1) 229"
|= =

A negativeu means favoring positive spin in the according region, while posfivdisfavors

them. As an example let us use the initial magnetizations as created by anpigitied or —8
corresponding to a half and complete filled initial system.
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Figure 8:§ at different points in time for different final potentigh. ps = 0. Initially we filled
the system withug = —8, corresponding to complete filling fér= 30,L = 100

The results for the development ungey = 0 < up for a completely filled initial reservoir at
t = 0 are mainly the following: We see the situation for a final uniform potentiain(@&ction
7.4.1) being a symmetric perturbation spreading to both sides of the bartiigharwall of the
system is reached when a pattern of waves reflected by the walls is createsther values of
Ua < 2 we observe the same phenomenology, but with increasing the potentimbdde, the
moving perturbation gets smaller, leaving more and more the central partiofttaeboundary
atA intact.

Let us now look at the case of an only partially filled reservoit at0. The results can be
found in Figure 9. We again observe a similar evolution of the magnetizatibthésymmetry
for small times around is lost for all but the flat potential case.
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Figure 9:§ at different points in time for different final potentiglg. us = 0. Initially we filled
system A withua = 0, corresponding to half filling foA = 30,L = 100

7.5 Trapping

Interpreting the results of Figure 8 and Figure 9 in terms of bosonic partadepation, we
observe that for growing potential differences more and more partioeblacked inside the
initial region.

This counterintuitive result is a consequence of energy conservalibe. main difference
with the classic system is, that we do not have an unbounded energyuspeEor each site the
allowed energy range | + 1. Therefore a particle can only leave the high-potential region, if its
loss in potential energy can be compensated by the gain of kinetic energy liogited inside
region B. The number of particles for which this is true decreases with theigg potential
difference, because initially we filled states inside the whole kinetic energeral to 1.

In the caseup — 1 > pg + 1 the minimum energy in A is always higher than the maximum
energy in B and virtually all particles are blocked inside System A. We willtb&lphenomenon
trapping. The small perturbations we still see are results of the tunnek,effermitting the
penetration of the System B modes into System A.

The results for an inverse potentjal < 0 does not present any new information, if we just
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Figure 10: Percentage of particles in the left or right system as a funatibme. Results for
A=30L = 100, initially at zero temperature with complete filling for different final potdatia
andug = 0.

think of holes leaving from the right to the left following he same rules.

For the half filled initial state, only the low kinetic energy part of the initial systerilled
and kinetic energies is conserved under the abrupt change of thetiglptsach that for the
dynamics only theN modes of kinetic energy-1...0 are significant, explaining the later inset
of the trapping. This accounts also for the loss of symmetry of the pertunsatimning to the
right and left, because the filling of the spectrum is not symmetric aroundkiggtic energy.

7.6 Time-dependent Distribution of Particles in the left and right System

As we have seen before, the magnetization, which leaves the left regétrorigly influenced by
the potential difference between the two systems. To clarify this behavichamge our point-
of-view completely to considering bosonic particles. In Figure 10 we hitteg the percentage
of particles in systems A and B as a function of time for different final vahfegs. Before
starting the evolution alNy particles were inside the left regioﬁg =1

From what we have seen before, we expect the maximuﬂg ob be att* = 2(L — A). At t*
particles that left System A &t= 0 and having been reflectedlastart to reenter system A while
slow moving particles had a maximum of time to escape from it. For high potentiataiftes
the fast propagating modes of system Biat ug with v=c = 1 are not occupied and we see a
slower propagation.

The maximum of these curves can be seen as a measure for the numbictefpahich can
actually reach System B. Our results underestimate the real numbersbebatsystem is finite
and we measure the departed particle number at a finite time. In Figure 1bwetshbehavior

of ng = N,E\‘I—gt) as a function of the system size. From the inset in Figure 11 we conclutihéha

committed error scales with.
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Figure 11: Percentage of particles in System B as function of time for @ifesystem sizes.
Results forA = 30, ua — ug = 0.75, initially at zero temperature with complete fillin§go(= A).
The fit in the insert has the equatiogmax= 0.98465— 22.592%

Let us suppose that the tinheuntil the wave package going out to the right returns, does not
suffice for slow particles to leave the initial region. We can make a quasickslevelopment
to get an approximative number of particles that have not yet left region A

2A > Vqt* ~ga2(L—A) = Nhondepart~ %%\ ~ %

The dependence in A is more complicated due to quantized spectrum, whickveréohtake
into account for small A.

Let us note as a summary, that we can optimize our results taking the paraassiaiows:

A'is to be taken small, but not so small as to introduce errors due to the quamntiahtiae-
particle modes in the left system. One can estimate that for most applicationsea¥alt- 20
is necessary to eliminate those errdrsshould be as big as possible, a number which is limited
by the calculation time.

7.7 Time-Evolution of the kinetic and potential Energy

The whole dynamics is constrained by the conservation of energy (uniyagmics). In Fig-
ure 12 we have represented kinetic and potential energy (as defin@d7y for the initially
completely filled and half filled system.

The graphs show the conservation of energy and the exchange hédtinetic and potential
energy due to the oscillations of the particle density between System A and B.
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(c) completely filled System A, evolution fara = 1.5 (d) half filled System A, evolution fopa = 1.5

Figure 12: Kinetic (solid line) and potential (dotted line) energy as a fundtitime for a system
of A= 30 prepared zero temperature with= 1/2 either half or completely filled. For the time-
evolution we useig = 0.The free systema = 0 = ug has constant potential and kinetic energy,
which would give straight lines.

We observe the important differences between the completely and half fibeehs behavior
att ~ 0. While for complete fillingEgin(t = 0) = 0 due to the symmetric kinetic energy spectrum,
we have for half fillingEpqt(t = 0) = 0 because, = 0 inside System A. For bosonic particles
the data would have to be shifted by the constant value “LZA.

7.8 Departure Dynamics

We have so far seen and understood the phenomenology qualitativelys lestablish some
guantitative results for the observed dynamics. First we have to knowitla étate in terms of
the new energy eigenfunctions.
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7.8.1 Projection of the initial State onto the Energy Spectrum att >0

Let us define the initial one-particle eigenstates of the Hamiltoniar-d1 as

Wi(x) k=1...A for states localized inside A
WB(x) k=A+1...L for states localized inside B

Each state can be characterized by its wave nurgbear g respectively and vanishes in the
other region.

The normalized one-particle eigenstat®$x) of the Hamiltonian at > 0 are separated into
the regions 1,1l and Il (the different energy regions correspogdpermitted spacial regions
A,A and B, B) given in Figure 4.

‘Dl'(X)—ch(X) |=L—A+1...L
(x) =a @ (x) + B @B (x |=B...L-A
<D|'”(x> =<nB(x) |=1...B

whereA’ andB’ depend on the potential difference and denote the number of states atiolyed
in System A or B resp. The functiong® are normalized, have a nonzero support only inside
their respective regioK = A,B and are associated to theh overall energy level. EvergqK
level can be associated to a real wave nungjfer The normalization of the state®' (x) over

the whole system yields

1= a?+ B2
If furthermore we assume the amplitude d;f' (x) approximately equal inside A and B (the

density has to be continous), this leadsrfo~ £.
The initial Fock state created at= 0 is

N
|Wrotal) = |_| N 10)
k=1

whereN < Ais the total number of particles we create from the vacuum Hate
Let us calculate the expectation value of the number of particles for a fiel steherea;”, a
are the creation and annihilation operators associated to the final emngegg@ectrum:

() = (Protall a|+al |Wiotal)
= (Wiotall z b (n)cﬁF Z @ (m)Cm|Wrotal)

q"total|z¢l qu nq Z¢I N) Nk |Yrotal)
N

=2

(7.15)

ZCD|(I’I
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We transform the spacial sum owerinto an integral taking into account the different energy
Regions L1111 This then yields (definingy = ua — Lg):

N
M) =3 (ME=A LD+ [N L A’->|ank|2) (7.16)

with |l Wl? —‘\/>\/>/ dx sin(q sm(qu)

= f(q*) ~O(gn — ¢ )<H (arcco$A—1...m,q"* )+E M (0...arcco$A—1);q’A)>,

~ Oyl gk

where we have passed into the continuum case in wavenumbers by rgplaeimdex depen-
dency inl by the continous wavenumbeg$* andn, by the probability of occupatior (g4).
We can then use the density of states in the new system in terms of the wavesgfhifthe
wavenumber associated to states in system ®>a0) n(q”) = na(q”) + ng(q”) as given by
(7.5) to determine the particle density in the final system:

P(a™) ~ (na(q™) +ne(d™)) F ()

=0(gn —q*) (ﬂ (arccogA—1)... 0

A)%Jr [1(0...arccogh 1>?q/A)A+;_Aﬁ)

=0(an —g™)[1(0...m Q’A)%
=po(q™)

In this formulapp(q) denotes the density of particles inside an interepbfithe initial state.

So we can simply use the occupation density of the initial System A to calculateniséydof
particles in the new system.

For a given energw of the new system we can conclude for the occupation density in terms

of energies using (&) de = p(q) dg andp(w) dw = p(d)) A

p(w) = p(Ua—Ccogdx)) = Po(Ha —€0Q)) = Po(Ua— Ho+€), (7.17)

7.8.2 Modelisation of the Number of departing Particles in the Continuum Limit

Only the one particle energy eigenstatesidtt > 0 allowed inside System A and B can guaran-
tee the transport of particles from one system into the other. We will cak tmesles, spanning
the whole System, propagating modes. Inside A they are characterize@iby#ive number
0a €]0,arccogl — (Ua— Us))]-

To calculate the number of particles leaving from systemid is identical to calculating the
initial density mapped onto the energy regia— 1 < w < Ug + 1 allowing for departure, where
w denotes the energy of the spectruntHoétt > 0. The initial density attributed to wavenumber
Qo is given by (c.f. 6.2)

po(do) = 1(qo)N(e) = [1(0...anido) with ay = arccosyo).
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Figure 13: Particle density departing from the left zone as a function gidtential difference
Ua — Ug. The different curves are made from different initial potentjgjs= —8,—0.5,0,0.5.

In the continuum Iimit'\‘%SC is then (forua > ug) given by:

Nesc 1 He+l

A A us—1

1 [9(Hs+1)

Ao

1 arccogpa—(us+1))
“a)

dwp(w)
dgap(da)

ddo Po(do) (7.18)

arcco$pia—(us+1)) [1(0...0n, o)
= /o ddo .

An analogous calculation can be done far< ugs.

In Figure 13 we have represented the numerical and theoretical remul}fﬁ%“ffor different
initial filling heights. Atug — ua = 0 the departure probability is 1 and we find the initial density
% inside region A. For great potential differences - ug > 0), the differently filled initial
situations behave similarly, because only the filled part of the spectrum isg&diem A is in
contact with system Boy > arcco$l — (ua — Ug))) in all cases.

The differnet situations for only propagating, only blocked states and adrskuation is
sketched in Figure 14.

If the potential difference is small enough to render non-filled statesgaophof the spectrum
of System A) propagative, the number of escaping particles is limitied by theyfiliaght and
not by the forbidden energy of System B. This accounts for the cutsitipns of the graphs for
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Figure 14: Energy spectrum for a given filling height with different ffipatential differences.
Dashed lines symbolize non-occupied modes, solid states are occupigdoatticles in prop-
agating modes (green) can escape to the right, while particles occupyingsramhlized in
System A are blocked (red).

the regionua > g where all occupied states are in contact with a propagating modé. -Fop,
the slope of this region tends to zero and is therefore a finite size effect.

The results and calculations fpi < ug can be done and understood similarly. For small
potential differences the first energy eigenstates rendered npagative are characterized by
w = ua — 1. But those are occupied such that we see a direct decrease pbinaasparticles.

8 Dynamics of the Linear Potential

After having shown some basic properties in the rather simple case of acttagial, we now
want to make a step towards a more general framework.

Starting with the same initial conditions as in the previous chapter we study thevohéien
induced by a linear potential for> O (c.f. Figure 15).

@t=0 (b)t>0

Figure 15: Schema of the experimental protocol in the case of a continoas fiagential.
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We consider
Us for A<i<L
Hi = Ha—Hp i )
Ha — S50 for 0<i<A

As before we will call the left system (@i < A) “System A’ and the rightA <i < L) “System
B”. For simplicity we mostly setig = 0.
Main differences to the previous chapter, that will have a significantanfia are:

e The potential is continous &, so we will not get energetically disconnected zones.
¢ No translation invariance inside System A along x
¢ Different potential structures for System A and B

We will first analyze the properties of the Hamiltonian and its spectrun fo0 before re-
turning to analyze how the initial state looks in terms of this new spectrum aradogéng its
dynamics.

8.1 Eigenstates and Energy Spectrum

The first step is again to diagonalize the Hamiltonian and identify the one-paatietgy eigen-
modes.

8.1.1 Eigenvectors

Writing the eigenvalue equation (3.11) results in

—%Cbk(i —1)—1—[.1i ql)k(i)—%q)k(i—l—l) = EkCDk(i) iZO...L—l, k=1...L (8.1)

with & the eigen-energy of theth eigenmode. We have s@t= % andug = 0.

We will again solve this equation separately for the subsystems A and Bebietonducing
the quantification of states using the matching of the boundary conditions.

In System B we recover the same results as for the step potential:

Dy (i) = Bysin(qei) & = —coggk). (8.2)

In System A, we transform (8.1) to a (continous) differential equatiorcdmysidering the
inter-site distance to tend to zero. This is possible by assuming slowly varigagfenctions
| D (i) — Py(i — 1)| < |Dk(i) + P(i — 1)|, which is only true for smalf — p(x). It follows:

2
—%%(D(x) = (61— pA) D) + EAxd(x). (8.3)

A
Now we transform to the new variable

() (A
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which yields, when put into (8.3):

d2

dw2
This is the differential equation defining Airy functions [1]. So we haveftinm of the solutions
in this region as a linear combinati@x) = C;Ai (X) + C2Bi(X) of two independent solutions of
this equation.

The hypothesis of slowly varying functions needs a refinement. Forem @aergyg — U(X)
grows withx. Therefore we expect (in analogy with the step system) a high kinetic ener
short wavelengths when approaching the right boundary of SysteRuthermore we expect
for System B all forbidden modes to be of unit wavelength. Thereforg@uiefor the region
&—H(x) >0

D(R) — KD(X) = 0.

(i) = (D i (i).
Using th~is ansatz inside (8.1) allows us the transformation to a differentialtiequof slowly
varying®(x). Using the variables

& =Ha— &

we recover (8.3).

So we can best describe a state by considering it separated into twd spgiciees. From the
left & — 1 (x) £ —1, a state is described lay(x) = C,Ai (X) +C2Bi(X). From the right € — 1(x) <
1) it is then given symmetrically bgp(x) = (—1)'C1Ai (X) + (—1)'C;Bi(X), where we have to
transform energy and position according to (8.4). In the middle betwease tiam descriptions
we expect a continous change from one to the other behavior. In thevie§jave will mainly
use the left solution and deduce the right by symmetry.

8.1.2 Energetically allowed Regions and Boundary Conditions at 0 and L

For System B atL we have the same boundary conditions as for the step potential, which have
already been used implicitly to determine the solutions (8.2) given in the prepaagraph.
Expressing the Eigenfunctions for System A on the left in terms of the otigarables we

get:

+CBi <_ (W)% <x+ w>> (8.5)

Analyzing the argument of these(X), we have forug < La the following sign behavior:

H(x)—1—¢
Ha — HB

%<0 if x>aHX-1-¢
HUa— U

x>0 if x<A
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Figure 16: Schematic draft of the energetically accessible regions ftinda potential, where
the accessible regions are limited pyx) + 1 as shown in 8.1.2. We set= %

The sign change has a particular meaning in the argument of Airy functiomarks the transi-
tion from oscillatory (A{(X < 0) and BiX < 0)) to decaying and diverging behavior (for(&i> 0)
and Bi(x > 0) respectively). In terms of the energy, the sign change takes place at(x) — 1,
marking the transition from an allowed (oscillatory) to a forbidden (decayémgrgy region.
Considering the solution to the right, the transition takes place-atu(x) + 1 as drafted in
Figure 16.

In fact these considerations lead again to a separation into alldeedu(x)| < 1) and for-
bidden (¢ — u(x)| > 1) energy regions.

Let us divide the system into energy regions of different behavior akedan Figure 16 to
sum up their behavior at the boundaries and make conclusions abouefhetprsC,,C,: The
two regions to consider will be < ua— 1 ande > ua — 1.

I, I g —1< e < ua—1: The wave functions have to vanish foK 0 < X > 0. So the rapidly
diverging Bily > 0) function has a very small prefactor in comparison to the prefactor

Cy of Ai(X>0) =0, namelyg—i ~ 0. So for these regions we have approximately for all

energiesb(x) = C;1Ai (X). This means that all states are equivalent on the diagonals parallel

to £(x) = p(x) and therefore just shifted images of each other.

I pa+1>¢€> pua—1: Ai(X(x < 0)) = 0 implies that the two contributions of the solution
have to compensate each othekat 0. The exact ratic% can be calculated setting (8.5)
to zero atx = 0. This result however is not of obvious use due to the complex structure o
the Airy functions and we will thus leave it at this rather structural formulation

For the functions describing the behavior near the right boundaryf weunse obtain the same
behavior superposed by the oscillations of unit wavelength.
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Figure 17: Left:®q(n) shifted by their associated energy eigenvalues for a systéra-ef0 sites
usingua =3, U =1, w = 0.5, A= 20. The dashed line represents the boundaries of the allowed
energy regions. Right®so(n) numerical data (squares) and approximation on the left and right
by the Airy function solutionsp(i) = ®(A—i)(—1)",i = 0...A/2. L = 100 sites usingia = 5,

Us = 0in a purely linear system.

8.1.3 Boundary Conditions at A

In principle, we will observe a quantification of the allowed energy valuekie to the matching
conditions of the eigenfunctions at the interface between Systems A aral@u&ing the exact
states, however, is a nontrivial task. Furthermore we will need foruntindr development only
approximations such that the exact matching conditions are not of immediassitgdor this
work.

To complete the picture let us consider the region above the allowed enargigs(x) + 1.
As for the step potential above the allowed energy regiorxforA, we observe fody(x) a
(Airy-Function) decay with a sign change at every site inside the forbiédergy region.

In Figure 17a, the results of our numerical diagonalization for the stageshmwn shifted
by their eigenenergies. We can distinguish the two regimes of oscillations withiglimg
wavelength in System A and sinusoidal behavior in System B. Furthermeoabserve the rapid
decrease outside the allowed regions. Notice the invariance of the stadeergly e inside
pus +1 < € < ua— 1 when shifted in parallel with the potential inside System A.

A comparison of the numerically obtained states with the Airy function solutionds/éegood
agreement (c.f. Figure 17b). There is however a difference in thaviimmearx = % due to the

fact that the hypothes%q;?—(i) <1 resp.%;q’qm < 1 are no longer invalid.

8.2 Density of States

For later use inside integrals in a quasi-continous energy band approximaticalculate the
density of states(¢). Let us recall that every energy state has one root more than its pssdece
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Figure 18: Left: Comparison of the numerical and theoretical results éodéinsity of states for
the linear potential. Right: Purely linear system density of states for diffeyestem sizes.The
flat zone in the middle disappears fax < 2

in energy and the additivity of the densities of two spacial subsystems ige® F7.2).
We separate System A and B and calculate their respective densities sf Satesystem B
the result is identical to the one found for the step potential (see (7.5))

n(ds)

né)g= ————.

1-(e— pg)?

For system A a similar approach is successful. Let us treat System A asoifisisted of a
series of infinitesimal subsystems of sizewhich each has locally the same properties as a flat
potential. We can then consider every single of these subsystems to be ktcadjyilibrium.
Inside each intervat...x+ dx we define the locah(e, x).

By integrating over the contributions to the density of states alomg determine the density
of states for a given value of the energy. The reasoning why this shauldis, that the difference
in energyﬁlg) = &+1 — & only depends on the zeros of the statg$x), Py 1 and not on their
amplitude. So the unknown amplitude (a functionxpis of no importance and we only have
to know the (local) wavelength (resp. the wavenumbern}, avhich directly depends only on
€ — U(x) = —coggy) for every interval d. In analogy with the results in the step potential (7.5)
we define the local density of states as

() —1...u(x)+15€)

m/1-(e—p)?

where the spatial dependency is solely carried by the expligitlgpendent chemical potential
and[|(a...b;x) represents the door function (c.f. (4.1) in 4.1 for the formal definition).
Let us carry out the integration over while keeping track of the boundary values when

n(e,x) =
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changing the variable tp= € — p(x) = € — pa+ #23H8x € [-1,1:

n(e) :/oAdx n(e,x)
:/11dy A [](0...Ax)

Ha—HB 11\/1—Y?

y=PB

= A arccogy) (8.7)

(Ha— HB)TT

y=a

where for a given energy is the minimum over allower of € — pa(x), while § is its maximum.
Let us solve this by considering the boundaries of the allowed energnseseparately. For each
of them we plug their extremal allowed valugr 3 into (8.7). Treating the boundaries one by
one, we get:

¢ Right boundaryX = A): Energy ranggig — 1 < € < ug+ 1 givesf} = € — Up.

A
HB—HA

e Right/Top boundaryx = pa+1— €: Energyrangeis+1< e < upa+1 givesp = 1.

e Left boundary: X=0): Energy ranggia —1 < € < ua+1 givesa = € — Ua.

A

o Left/Bottom boundaryX= pa —1— 2

a=-1.

€): Energy rangeug — 1 < € < Ug + 1 gives

To cast the result in a readable form while taking into account the diffenesrlapping re-
gions it is most convenient to write the result in terms of the door function tayewhose the
appropriate interval.

The total density of states for all those regions and including the results for s, for which
an analogous calculation can be done, then reads

n(e) =
b NHe 1o He+ LE) T (1 (s 2)?) (8.82)
+ ﬂ(uB—1...uB+1;e)marCCO$uB—£) (8.8b)
+ H(uBJrl...uAJrl;e)“A_uB (8.8c)
+ H(uA+1...uB—1;s)uB_uA (8.8d)
— H(HA—]....HA—F].;S)M(arCCO$HA_£)). (8.8e)

In this formula, (8.8a) reflects the contribution from system B while the otbetributions are
those of the boundaries of system A. (8.8c) and (8.8d) give the cotiribaf the upper diagonal
boundary for the case of a positively or negatively tilted potential.

In Figure 18a we compare the resulting function with the numerical data.
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Before we use these results to evaluate dynamical properties, let uatevilihe size of the
system has a significant influence. For the continous limit we basically ptaoselves in an
infinite system, so we expect the calculated results to be the limit of the numarieakovhen
L — oo,

In Figure 18b we show the curves obtained numerically and analyticallyiffereht system
sizes. We have separated the linear System A from the flat System B to elithieateperposi-
tion of their states and give a clearer picture. The errors, we find aléesraa for small systems.
So the use of this approximation will not introduce great errors due to fiziée s

In fact the technique used here can be generalized to work with manyfotiter of potentials.
As this leaves the main focus of this work, this result can be found in therfdip@.

8.3 Time-Evolution of the Density Profile

In this section we will show the numerical results for the evolution of the initisd gtkaced inside
a linear potential and then try to understand some of the dynamical phenore@fserve. After
an analysis of the departure dynamics the main focus will be on the trapgjimmnrewe will
mostly treat the case of a repulsive potentigl> Lig.

In Figure 19 the numerical results for the dynamics in the linear case fereiiff initial states
and slopes of the final potential are shown. As for the step potentialnmsee that part of the
particles leave to System B, forming a wave package. Inside the initial reggdmave a more
and more pronounced trapping effect for increasing potential diftere

8.4 Departure Dynamics
8.4.1 Projection of the Initial State onto the new System

In the same way as in the step potential case we investigate the number of pantikiddly
localized in System A leaving to System B. A formal projection of the initial statés the final
system is however an arduous task.

We can nevertheless understand some basic properties of the projectieauiring to the
classical picture of infinitesimal droplets with well defined momentum and positaespond-
ing quantum-mechanically to a coarse-graininggin We consider a density of infinitesimal
droplets of masgq(x) dxdqg, which is equivalent to

4+ 2
5 @00 ex
pa(x) dax = 2

dg with L>m

The initial density is created by the superposition of the N lowest energnsigfes (charac-
terized byg < gn) ®q(x) = Asin(gx) with an occupation

f(@=T1(0...an;q)

with gy = arcco$ o), where we usglp = pa(t = 0). We assume that in the continuum limit the
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coarse-grained particle density is approximately uniform for means ovaf golumesAgAX:
mH-Aq

KPS om(x) P
k=m

X
AgAX

We obtain then for the density iandq

~ Const = 1.

dx
Pq(x) dxdg ~ - f(a)n(q) da,

wheren(q) is the local density of states as defined in 8.2. Therefore, the initial dessitgiated
to the wavenumbey at a given position is independent of x and given by

1 1
pa(¥) = xn(@)f(a) = —[1(0...an:q).
We use (the kinetic energy @)
23 = & — Ho = —0¥(q) < — CO ).

Let us determine the projection of the density. While quenching, every sdrgiget is
mapped into the new system in a way that conserves its posiaon kinetic energyy,.

The energy inside the new system is denotediand the potential by (x). The condition for
the conservation of kinetic energy yields for any x (introducing the nevabkey = w — Lk(X)
as the kinetic energy in the new system):

Jo = 0— [(X) = £ — Ho = 25 = —cOg(q). (8.9)
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The initial density associated to a given valuezgfs therefore projected onto a line parallel to
H(X) given byw = Yq+ p(X) with Y = .

A sketch of this mapping of droplets is given in Figure 20.

The density is conserved throughout the mapping and we get using (8.9) :

p(¥.x) dydx = pc?(x)‘)?:— cog(q) dgdx (8.10)
The final density only depends arthrough the value of(x*) and we omit the variable:
o 1 -
p(9) dydx= pg(x) dgdx = — dqax, § = —cos(q) (8.11)
So we get
§) =+ 1(-1... - cosaw).9)
p y - 7_[\/1_7)72 te qN 7y .

Explicitly usingy(x) we can represent the density as a functiox &r a given energy using
Jy=¢—pua(l-3):

-2 A A a—et1). Duan 8.12
T[A\/l_(g_uA(l_X))zﬂ(uA(llA £+1) uA(uA g+cogqn)),x) (8.12)

We expect a density profile of this form inside the linear region in the cagnsiaed model.
This is well reproduced numerically as can be seen in Figure 21.

p(x)

8.4.2 Modelisation of the Number of departing Particles in the Continuum Limit

To calculate the number of particles, that will leave the systerild, we have to count the
number of particles mapped into the energy regidh ..+ 1, settingug = 0. Those particles
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Figure 22: Particle density departing from the left zone as a function gidtential difference

(us = 0). The different curves represent simulations for different initial fillifensities. We used
L =200QA = 30.

will be occupying propagative modes and therefore leave to System iB.iFlequivalent to
y=—cogq) € [-1,1—pua(1—3)] if ua>0.
Nescis therefore given by the following integral (fpr > 0):

Nesc_l/Adx/l dwp(Y(w,X))

= i/oAdx/o"dqpo(q) 1 (0...arcco$uA(1_£)_1)7q)

1 (A arccogpa(1-%)-1) 2
= —/ dx/ dgO(arccosLp) —Q))O (x—A(l— ))
ATt Jo 0 Ha

— Aln/OAdX arccogpia(l— 2) —1)O(arccosip) —q))O (X—A(l— I12A)> (8.13)

This integral has to be evaluated separately for different valugg.ofCalculating in the same
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way also the case @ip < 0, the final result reads

( \/1— pé+arccospio) for 2< up

[ (ua—1)arccogpa — 1) + arccos i) J

1—p2— 2_
Nese 1 + m Ha(2— Hn)
A TT|ual %rccoﬂlo) for O<pa<1+Up-
(Ua+ 1) arccogpia + 1) — Uaarccos o)
—v/—UA(2+ pa)?

—/1— p3+arccogpo) for pa<po—1

The numerical results f(:»%SC and theoretical curves are shown in Figure 22. We see a good
agreement for the result as longlas small. For largeépa| the coarse-graining hypothesis does
no longer hold true inside the integration region.

The employed technique can also be applied to calculate the number of parégeed into
any other given energy range. The main result to retain is that the nurhbscaping particles
is proportional to the inverse of the slope of the poteritial [ %.

for 1+ U< pupa<?2

for po—1<pua<O

8.4.3 Potential-independent Features

For our given partially filled initial state, which is quenched to any new potentia always
observe two different regimes for the departure probability. First, if @dupied modes of the
energy eigensystemtt- 0 are propagative and second if we have modes blocked by the potential
difference. We can actually determine the coordinates of this transitiomfopatential with

d‘é)((x) > 0, by considering the conservation of kinetic energy (and thereferg (x) = cogqn)

over the quench. By taking

i\
Mg +1= pa— Ho= Ha—cOS( — >

to get the potential differenc® rendering the highest energy states non-propagative, we get the
coordinates at the point of transition

(A, NdAep): <1+cos(n20)7l\,i?>, (8.14)

where% corresponds to the initial filling®. These results correspond well to the graphs we
have shown so far for the linear and the step potential (c.f. Figures)13,22

8.5 Characterization of the Blocked Particles

Let us return to the linear potential dynamics.The package of departitiglgsiis just a propa-
gating density on a flat potential. It is therefore of minor interest and headilbeen extensively
studied (e.g. [11]). We can always chodsbig enough to see it dispersing. However inside the
region of the linear potential we observe a persisting dynamics of the tiggapécles. In Figure
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23 we have superposed numerical results for the densities of partioheangt points in time
which allows us to explicitly see some of the main features and dynamical fiespeve will
guantify in the following.

To better understand the dynamics, let us recall the system’s energgsrand analyze their
behavior separately.

e Lg— 1< &< ug—+1: Particles in this energy region will leave to system B, because they
occupy propagative modes.

e LUg+1< €< up—1: Every energy eigenstate can be constructed from any other Eitgensta
by just shifting it in parallel with the potential. Density of states(is) = IJAéIJB' Particles
occupying these states are trapped.

o Lp—1< €< ua+1: Particles occupying states in this energy range are trapped as well.

The Eigenstates are superpositions offAiand BiX) and therefore hard to calculate ex-
actly.

The three regions are drafted in the Figure 24a.

8.6 Plateau

The most striking feature in Figure 23 is the formation of a flat region in the mifdtee linear
potential region. A closer look at the allowed energy regions and thggseectrum gives a
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Figure 24: Schematic draft of the energetically accessible regions fdintdee potential. Den-

sity in the upper (hatched) pafi{ — 1 < € < pua+ 1) is dispersing over time, the lowest modes
(hatched) with—1 < € < 1 are the propagative modes. The remaining modes (inside the bold
black parallelogram) are equidistributed and homogeneous and theezfobét identical trans-
portation properties on parallels tgx). The gray surface shows the spacial distribution of the
density of particles. The observed density at a given position x is obtaynedgerposing the
density of all allowed energies. The dashed lines represent the integratige over the homo-
geneous modes to obtairix) at three example positions »f Insidex_ < x < x;. content of the
integration range stays identical over time.

hint to its explanation. In fact the plateau occupies exactly the spatial rargee only states
inside the energy regions + 1. .. ua — 1 are allowed (c.f. the region not hatched in Figure 24a).
As a consequence of the spacial invariance of the initially created statheusthtes in this
energy region, all the allowed states inside this region are uniformly filléd=a). They are
independent, evolve identically under time-evolution but are slightly shifteddgainst each
other. As before, their filling and behavior does only depend on the lfie= w — p(x) and
not on energy and position directly. Therefore all density on a line inlphta p(x) is identical
in value and moves with the same velocity. If, to fix the ideas, at a given posititemsity is
leaving to the right for a given energythere is always the same density taking its place from the
left introduced by a state @&f+ de, if the states + de belongs toug +1... ua — 1. We therefore
basically observe a displacement of a block of constant density alfarghe density associated
to a given initial value of.” This is illustrated by Figure 24, where two points in time are shown.
Therefore any density at positiaresulting from the superposition of only states showing this
behavior stays unchanged over time. The initial shape of the particle demkith is the flat
plateau is then preserved. In Figure 24b we mark the border of the riegidrich this is valid by
x_ andx,. All points outside this region have contributions to their density from the rtiega
density in—1 < € < 1 or the irregularly dispersing regiquy — 1 < € < ua+ 1, thus introducing
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non time-invariant contributions (see the changing content of the dastegplation intervals in
Figure 24).

Calculating the position of the plateau from the minimal and maximal allowed spaciadie
nates ajg + 1 andua — 1 yields

A A< 4
Xo— + 1-
Ua— UB

~=35%5 > for pa—us >4, (8.15)
which is confirmed (up to small contributions from tunneling effects) by auukations. The
plateau region only exists fqra — ug > 4, thus for the situation shown in figures 23 and 24.For
Ua — Us < 4 the spatial ranges for escaping and dispersing particles supegubsether.

8.7 Oscillations

The second interesting feature of the dynamics we observe inside the fioesaatial region

is a periodic exchange of density between the regions on the left and oiglheside of the
plateau, which can be interpreted as oscillations between two macroscadizddcstates. The
main dynamics is again caused by the uniform displacement of density insidadhgy region

Us+ 1< & < ua— 1. Supplementary to this, we observe an additional oscillation of density for
X < X_ which is added to these main oscillations. These smaller contributions to the particle
density are caused by the particles trapped inside the energy negie < € < ua+ 1, which
oscillate irregularly. In order to avoid this perturbation, one may let theskétbparticles escape

by opening a propagation band on the left by using a final potential obtine f

Us for A<i<L
i = § Ha— E5ERi for 0<i<A. (8.16)
Ha for i<0

We will however leave the discussion of the behavior in this case for later.

8.7.1 Period

Let us estimate the period of the main movement by using the droplet-model. loggpna the
step system we can define a local velocity at a given postidepending on the energyand

position:
VI = sin(q)lx = £4/1— (£ - u(x))2.

The time of one period (the time for a droplet to travel from the left bounttattye right and back
at this speed) is for any droplet and within the energy ramge 1 < € < ua — 1 independent
from the actual energy value:

T:jfdxl / de— uix ) _op A (8.17)
Vx  HMa—HBJ-1,/1—(e—pu(x Ua— U

This result (which is the main reason for the plateau we observed) is meafiby Figure
23, because densities at times differing Dysuperpose. To verify our result we compdre
to measurements of the period of oscillations for different potential slopEfgure 25 again
confirming our calculations.
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Figure 25: Period of the main oscillations in the trapping region of the lineanpatdor a
system ofL = 1000,A = 200. Forua — pug<4, these oscillations were not observed (no plateau).

8.7.2 Dynamics of an isolated Droplet

In the same way we can calculate the time-evolution of a single droplet of\eadayt > 0: We
assume that this single droplet has a posifi@n with x(0) = xo. Analogously to (8.17) using
A= pa— Ys:

X 1 A &—H(X) (Kgs_ IJ(X/)) A . .
t= [ dX— =+2— =+2— — 8.18
/XO V|x/ A &—H(Xo) \/17 (gs _ IJ(X/))Z A (arCSIr(y) arCSIr(yO))a ( )

The=+ stands for the solution of particles initially moving to the right and left. We usedhiahle
changey = &s— p(x) for x(t) andxg. Inverting (8.18) then yields the fundamental relation for the
displacement of a single droplet:

&— MU (X) =y = sin(arcsinyo) Ft*) (8.19)

whith the rescaled timg = t%. As all of the droplets forming the total density move indepen-
dently, we need only to identify the initial density at the initial positi@ifyo) corresponding to
p(y,t) whereyp is given by (8.19). This can be formulated for any final valug,dfy using the
Dirac delta to choose the right initial position:

1
p(:t) = [ dr0p®(yo)(sinfarcsirtyo) ') )
The Dirac Delta can therefore be interpreted as the Greens functiorirgfla particle displace-

ment. Of course we can easily recover the dynamics in terreabé given energy, by undoing
the change of variables= € — u(x).
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8.7.3 Semi-Classical Model for the Oscillation Dynamics

Let us push the model used a little further to model the full displacement ofittielp density.
First we calculate the initial density inside the new system associated to an sifirateenergy
interval p°(y) using (8.11) yieldingy= — cogq).

Using (8.19) we can then calculate the displacement of this density over tirree dimen
energy. We make the assumption that due to the thermal character of the tatgakisere is no
preferred initial direction such that we have for the initial density moving taitite and to the
left p_.(§) = p— () = 30°(¥).

We assume that the total density of particles is given at any pythe superposition of all of
the energy eigenstates, but we will limit our calculations to enegjiesides + 1 < € < up — 1.
So the last step is to integrate for every positidhe density over the allowed energy range.

p(x,t) :/_11dy M <qu+1—A. .. éx— 1;y> p(y,t)

A A
= [ oy
/Ondqw <5<Sin(—t*+g—q) _y> +5<Sin(+t*+g_q) _y>>

1 t* 40N . A A | *
_ZIT/t*qN dq H <AX+1_A'“AX_1’_COS(_Q ))

(8.20)

This integral can be done for any given valuexaindt. The integration surface is sketched in
Figure 26.
Inside% + % (1— %) for A > 4 the plateau is reproduced, because the door function is always

one: 2q q
o 2N _ v _

Fort* = 2nmrwe get

arccogl — £x)
n

pixt) = ] (o...g\(l—cos(qN»:x)

#1110 costan)) .. 18- 2)x) B

gn —arccogl — £x)

= (8.21)

+[] (2(A—2)...z(A—l—cos(qN));x>

The caseé* = (2n+ 1)7Tis then easy to establish by simply using the mirror symmeté/amd
settingx' = A—xin (8.21).
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Xt gy t* t* +0n

Figure 26: Integration range of (8.20). Over time the ragge t* — qy...t* + gy shifts along
with t*. The integration is carried ovef inside the surface limited by the solid blue curves and
the extremal values @f*. As an example, the surface fdr= 3.5 is hatched in green. The dotted
red lines mark the boundary of the plateau region.

Fort* = Z +nmwe get

On +arcsin2x—1)
2m

p(xt") =11 (5 (2-sinaw) .. 3 1+ sin(aw)ix)

#11 (F+sina)... 5 (6~ 1-sinan)ix) %

On +arcsir((A—1-x)4)
2n

+1 (2(A— 1—sin(gn))... %(A— 1+Si”(qN)>?X>

The results are shown in Figure 27 for the system we were treating dwufalso for a system
with an initial density developing under a potential allowing high energy modesdape as
given by (8.16). This not only shows a very good agreement to thelagcuprofiles, but also,
that the additional density we see on the left of the plateau is really due to thegsain the
high energy levels ofv > s+ 1. A comparison of these density profiles would therefore be a
good starting point to analyze the behavior of these particle modes.

8.8 Current

From what we have seen so far we expect a current of particles tdfolkand forth through the
plateau region and generating the oscillations between the two macroscogscvetaidentified
for the energy ranggis+ < € < ua — 1. This current should be spatially constant within the
plateau region and periodic with periddin time.

We can define a local curreptissociated to each connectioa O...L — 2 between neighbor-
ing sitesi,i + 1 by using

dn _ _ .
leli—li-i-l:'[ani]:' chi*chrcﬂlci,ci*c'
|

and identifying the terms consisting of operators acting, o 1 andi +1,i + 2 (c.f. [14]).
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Figure 27:ua— ug = 5,L = 1000A = 200. The curves represent different tintes znﬂAéUB n.
Left: The situation of a system allowing escape only to the right. Right: Systemiag escape
to the left also. The dashed curves represent the density calculatbe$ertimes from (8.20)

Transforming to Clifford operators then yields
-
=iz M2 rz+ri,ri. (8.22)

The expectation value of the currents can thus at any time be calculated a-th@gonal
elements of the correlation mati@(t) given by (4.6).

Numeric results for the current in the middle of the platead ats a function of time are
given in Figure 28a. We expect the exchange of particles and thus ttentbetween the two
localized states we were treating in the previous chapter to be of p'ériﬁanAA if the slope
of the potential is high enough to create a plateau. Otherwise we have otintifrom high-
energy states and departing particles.

We will again use the classical model introduced in 8.7.3 to reproduce thésioetor the
states with energigga — 1 > € > ug + 1. The velocity isv(y) = £sin(arccog—y)) = £sin(q).
We make the assumption, that the current is analog to a classical cuwentlyip(y,t)v(y)
and that the total current then is the superposition of all of these cumertgiven position.
Therefore (witht* = &)

J(x,t%) :/—11dy M (L’Z*er 1—A...2x—1;y> p(y,t)v(y)
= [ @yl (i) sinarccos )
/Ondqﬂ O <5<sin(—t* +2-9 —y> - 5<+sin(t* +2-9) —y>>

L e (Bxr1ona. B ) ) sin(—q* 8.23
_27T/t*qN q* [ ] (Ax+ — "'Z\X_ ;—cog—(q )>sm(—q) (8.23)
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Figure 28: Current in a system &f= 1000 A= 200 created with half filing at = 0. Left:
Current as a function of time in the middle of the linear regimﬁ:(g) for different ua. The
theoretical curve has been created using the result from (8.24uaForl we see the departure
of particles as the dominating element while jgr = 5 the oscillation dominates the picture.

Right: profile of the local current density for different tintes “ffﬁB nand the dashed theoretical
curves.

We proceed to solve this for some special cases. Inside the plateau (#&giof):

i 1 t*+qu* . . 1 . e 8.24

it =5 /q g sin(—q") = ~ sin(a) sin(t") (8.24)
Note that there is a maximum particle exchange for half filling, while we havexobamge
for gy = O, T (completely filled or completely empty). The observation of perfect sinusensid
the plateau region supports the thesis to have the oscillatory exchangeidepdetween two
localized macroscopic states.

This result is shown in Figure 28a and reproduces very well the numatgc &urthermore,
t* = Z+ 2nmyields the simple result (a simple trapezoid)

om 1 ozt (A A N
J(X’Z)_Zﬂ/’;qN dg* [ ] <Ax+1—A...Ax—1,co§(—q )) sin(—q") (8.25)

Ax—1—sin(gn)
2m

= <2(1—sin(qN)) .. 2(1+sin(qN));x)

+[] (2(1+sin(qN)) ..

g(A— 1- sin(qN));x> sinE;qN)

2(A—1—x)+sin(a)
21

+1 (2(A— 1—sin(gn)) ... g(A_ 1+Sin(qN));x>

This result is shown in Figure 28b alongside the numerical results. Weesgesmall dis-

torsions of the theretical trapezoid solution due to the not exactly flat initialdiflaaf. Figure
3).
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Part |1l
Conclusion and Outlook

9 Conclusion

We have shown in close connection between theoretical developmentsrardcal simulations,
the main features of the quench dynamics for the Bose-Hubbard-Hamiltorttzencase of a step
and a linear final potential. The properties of a localized initial stafe-aD have been presented
as well as conserved quantities of the system.

For the case of a step potential and a linear potential, which are appliedi@snsguench
to this initial state, we have established the diagonalized Hamiltonian and andlyzstergy
spectrum.

First we investigated the time-evolution in the case of the step potential. This lghd to
counterintuitive result of particles being trapped inside their initial spaegibn, although a
classical approach would predict the quench potentiaba to be repulsive there. This behavior
was reproduced analytically using a continuum limit approach.

For the case of a linear potential, this trapping of particles persisted anthe@deled using
a similar approach. Additionally we analyzed the dynamics of these trappédigm The
dynamics can best be interpreted as the oscillation of density between twpddgaacroscopic
states in the left and to the right part of the trapping region. These osci8abiotensity were
modeled using a semi-classical approach allowing us to identify its macrosmagigstates.

The good agreement with the numerical simulations suggest that we haeeeath good
understanding of the underlying principles and phenomena governingjukisch dynamics,
which presents us with a good starting point for further research.

10 Further Research and possible Generalizations

The model we used allows for a series of generalizations and furthetogewent. First of all
it should be possible to use it for predictions about the behavior of thednghgy modes, we
treated only phenomenologically. On the formal side, it should then be @$sitpeneralize the
techniques used to many other forms of potentials analog to what we showendip A. This
should allow to model the departure dynamics and even the time-evolution inrthelsssic
model for more complicated potentials.

Furthermore, the persistence of these trapping and oscillatory phenaaeriz studied if
weakening the hypothesis of a hard-core boson-boson interactias.isTactually been done
in my research group in parallel to this work using DMRG. Although the resuésstill to be
verified we see hints to a changing behavior at high fillings and for the inlgdynamics.

For applications, refined calculations for different potentials and theiodricibility in exper-
iments could be done. This might yield a protocol for a “self-compressibbbsonic conden-
sates, because the particles in the high energy levels cause the densitgdallyehigher than
the initial density, when the oscillating density is localized in the left macrosctgie. s
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Part IV
Appendix

A Calculation of the Density of States in the Generalized
Case
Here we want to generalize the technique used in 8.2 to calculate the derstiyesffor classes

of different potentials.
For system B system, we assume the flat potential and thus we have

n(ds) '
1-(—ps+e)?

n(e)g =

As this is well understood and only adds to the contribution of the left systencaw now treat
the right left system independently.

We again cut system A into infinitesimal small intervalsashd integrate the local densities of
state for a given energy value. In analogy with the results in the step po{@nipwe define the
local density of states as

MHE =1 HX) +Lie)

m/1-(e-ux?

where the spatial dependency is solely carried by the explicitlgpendent chemical potential.
Now we integrate to get (for & x < A and a potential for whicﬁ% <0)

n(e,x) =

(Ha(X) —1...Ha(X) +1}€)

m/1- (e - H(x)>

dx 1
= 1o d(e — u(x)) (d(s - u(x))) n\/l_ (LA — )2

n(e) :/OAdxn(s,x) = I

min(1,e—ug)

min(1,e—pg) dx 1
_/max(—l,e—yA) dy (d(s — u(x))) ”\/1—7(3/)2 (A1)

A special case is the step potential itself. In this case the derivative esnésid we obtain a
Dirac delta function ua — Ug)d(x— A) reproducing the result we postulated.

The same calculations can be done for a potentiaﬂggi‘( > 0), which will invert the mini-
mum and maximum for the borders and ad a negative sign. Potentials chamgjingnonotony
behavior can also be calculated by taking into account the different pedraittbnon-permitted
regions.

Let us calculate the explicit result for a group of simple potentials.
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Figure 29: Comparison of theoretical (lines) and simulation results (poimtgotentials of the

form p(x) = pa (A;nx)n with A= 1000 andus = 3

For the case of a potential of the fom{x) = ua (A;nx)n we get:

dx Ay L
<d<€—“<x>>>_u§n(£ Yt y=e—ux)

Into this form we can easily include a nonzero value figrby shifting the energy spectrum
without any further calculations.

The resulting integrals can be solved and but give rise to complicateddgegreetric func-
tions. For the special case= 1 we recover the results for the linear potential. We give a couple
of examples how these solutions will look like and compare them to our numdetalin 29.

Considering the excellent agreement between the calculated and simulsuéid, rere can
assume our calculations as a good starting point for further calculatiorthéladeparture prob-
ability.

B Informatics System and Simulation Routine used

The calculations accompanying our project were performed in C++ maldagofithe GNU
Scientific Libraries originally written for C. The procedure of calculatiorresponds largely to
the mathematical procedure mentioned in the introduction. A speed benchmiatk gives an
idea of the time-consumption involved, showed that the running time scalesxapptely like
T= Nstepg_z-STo, where L is the system size allgiepsthe number of time-points calculateth
is a reference time, which largely depends on the processing systenbaseglof order 10°s.
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